The influence of subsurface carbon on the selectivity in the hydrogenation reaction of 1pentyne over Pd catalysts

UNIVERSITY

of

CAMBRIDGE

of **ISOTOPE**

INSTITUTE

Contributors

- Detre Teschner, Elaine Vass, Michael Hävecker, Spiros Zefeiratos,
 Péter Schnörch, Axel Knop-Gericke, Robert Schlögl
- Aidan M. Doyle, Shamil K. Shaikhutdinov, Hajo Freund
- Mounir Chamam, Attila Wootsch
- Arran S. Canning, Jonathan J. Gamman, S. David Jackson
- James McGregor, Lynn F. Gladden

Athena: ADVANCED TECHNOLOGY IN CATALYTIC CHEMISTRY AND ENGINEERING FOR NOVEL APPLICATIONS

Introduction

Selectivity issue: what defines selectivity?

Model of overlapping TDS peaks

Acetylene hydrogenation (TDS)

Kahn NA, Shaikhutdinov SK, Freund H CATALYSIS LETTERS in press.

Hydrogenation (TDS)

sub-surface H

1. <u>Subsurface H</u>: effective for alkene-to-alkane but also for alkyne-to-alkane transformation

Pulse experiments 1-pentyne Adsorption

(After H_2 pretreatment)

- **First pulse shows activity**
- 65% conversion
 - 38.5% 1-pentene
 - 6.5% *trans*-2-pentene
 - 3.5% *cis*-2-pentene
 - 6.5% pentane
 - 11.5% Unknown

- *1. <u>Subsurface H</u>*: effective for alkene-to-alkane but also for alkyne-to-alkane transformation
- 2. <u>Surface H</u>: could be selective (spillover)

Hydrogenation

1. 1-Pentyne hydrogenation over 1% Pd/Al_2O_3 in a closed loop-reactor, t=5 min. (after repeated runs at each condition)

- 2. 1-Pentyne hydrogenation over 1% Pd/Al₂O₃ in continuous flow
 - $H_2:C_5 = 4:1$ total $H_2:C_5 = 3:1$ selective

total hydrogenation selective hydrogenation

- *1. <u>Subsurface H</u>*: effective for alkene-to-alkane but also for alkyne-to-alkane transformation
- 2. <u>Surface H</u>: could be selective (spillover)
- *3. <u>Different reaction orders</u>* in the different selectivity regimes & Abrupt changes between regimes

During TEOM experiment

	40 mins			170 mins				
	1-pentyne	1-pentene	2-pentenes	n-pentane	1-pentyne	1-pentene	2-pentenes	n-pentane
Pd/Al ₂ O ₃ , 100 % H ₂	trace	trace	trace	100	trace	trace	trace	100
Pd Black, 100 % H ₂	0.1	trace	0.1	99.8	3.6	0.5	11.3	84.5
Pd Black, 5 % H ₂	58.7	40.1	trace	1.2	42.8	54.7	0.2	2.3
Al ₂ O ₃ , 100 % H ₂	81.1	16.2	0.7	2.0	74.9	22.4	0.7	1.9
Quartz Wool, 358 K	81.6	17.1	0.2	1.1	-	-	-	-
Quartz Wool, 303 K	89.2	10.6	trace	0.3	-	-	-	-

During TEOM experiment

		40 1	mins		170 mins			
	1-pentyne	1-pentene	2-pentenes	n-pentane	1-pentyne	1-pentene	2-pentenes	n-pentane
Pd/Al ₂ O ₃ , 100 % H ₂	trace	trace	trace	100	trace	trace	trace	100
Pd Black, 100 % H ₂	0.1	trace	0.1	99.8	3.6	0.5	11.3	84.5
Pd Black, 5 % H ₂	58.7	40.1	trace	1.2	42.8	54.7	0.2	2.3
Al ₂ O ₃ , 100 % H ₂	81.1	16.2	0.7	2.0	74.9	22.4	0.7	1.9
Quartz Wool, 358 K	81.6	17.1	0.2	1.1	-	-	-	-
Quartz Wool, 303 K	89.2	10.6	trace	0.3	-	-	-	-

During TEOM experiment

Up to x5 more carbon is retained in the selective hydrogenation regime

- *1. <u>Subsurface H</u>*: effective for alkene-to-alkane but also for alkyne-to-alkane transformation
- 2. <u>Surface H</u>: could be selective (spillover)
- *3. <u>Different reaction orders</u>* in the different selectivity regimes & Abrupt changes between regimes
- 4. <u>Cuptake</u> is significantly more in the selective regime

In situ XPS system

Reaction in the mbar p region (in-situ XPS)

	5% Pd/CNT	3% Pd/Al ₂ O ₃	Pd foil	Pd(111)
Conversion [%]	~ 10	~5	~2.5	<1
Selectivity Pentene [%]	~95	~80	~98	100
Selectivity Pentane [%]	~5	~20	~2	-

Recation conditions: C5/H2 = 1:9, 1 mbar, 358 K

In-situ XPS: Pd 3d depth profiling

In-situ XPS: C1s (Switching off experiments)

In-situ XPS: Pd 3d (Switching off experiments)

22

In-situ XPS: Pd 3d (Switching off experiments)

In-situ XPS: Pd vs. C depth profiling

- *1. <u>Subsurface H</u>*: effective for alkene-to-alkane but also for alkyne-to-alkane transformation
- 2. <u>Surface H</u>: could be selective (spillover)
- *3. <u>Different reaction orders</u>* in the different selectivity regimes & Abrupt changes between regimes
- 4. <u>Cuptake</u> is considerably more in the selective regime
- 5. <u>Pd-C surface phase</u> forms in the early stage of selective pentyne hydrogenation & there is significant amount of <u>subsurface C</u> below of it

Model (during the reaction)

- *1. <u>Subsurface H</u>*: effective for alkene-to-alkane but also for alkyne-to-alkane transformation
- 2. <u>Surface H</u>: could be selective (spillover)
- *3. <u>Different reaction orders</u>* in the different selectivity regimes & Abrupt changes between regimes
- 4. <u>Cuptake</u> is considerably more in the selective regime
- 5. <u>Pd-C surface phase</u> forms during selective hydrogenation of pentyne & there is significant amount of <u>subsurface C</u> below of it
- 6. <u>Dynamic</u> behaviour of Pd-C and subsurface C

Industry Collaboration of FHI (AC Department) @ BESSY

Sumitomo: Selective Propene Oxidation over Ag Catalysts

BASF: n-Butane Oxidation to Maleic Anhydride over VPO catalysts

Südchemie: VO_x/TiO_2

DaimlerChrysler: surface composition of engine parts

Johnson Matthey: Athena

Outlook: In situ XPS / XAS The future at BESSY

Innovative Station for In Situ Spectroscopy A project of BESSY and the Dep. Inorganic Chemistry, Fritz-Haber-Institut

Installation of a beamline exclusively used for in situ spectroscopy in the soft X-ray range

Installation of infrastructure optimized for these kind of experiments on site (e.g. chemical lab, gas supply, gas analytics)

Later, further implementation of other in situ spectroscopy techniques: multi wavelength Raman, UV-Vis, fluorescence yield ?!

Start of user operation of the beamline: 2007

Outlook: In situ XPS / XAS The future at BESSY

MAX-PLANCK-GESELLSCHAFT

Outlook: In situ XPS / XAS The future at BESSY

